

Using RNA Therapeutics to Deliver a Cancer-Free Future

TRANSCODE

THERAPEUTICS[™]

NASDAQ: RNAZ

April 17, 2024

Forward Looking Statements

Before you invest in the securities of TransCode Therapeutics, Inc. ("TransCode" or the "Company"), you should read TransCode's filings with the U.S. Securities and Exchange Commission ("SEC") for more complete information about the Company. You can obtain these documents for free by visiting EDGAR on the SEC website at www.sec.gov. Alternatively, the Company will send you these documents at no charge if you request them from TransCode at 6 Liberty Square, #2382, Boston, MA 02109, Attention: Investor Relations; or by calling (857) 837-3099.

(-1

This presentation shall not constitute an offer to sell or the solicitation of an offer to buy, nor shall there be any sale of TransCode securities, in any state or other jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or other jurisdiction.

Statements in this presentation contain "forward-looking statements" that are subject to substantial risks and uncertainties. Forward-looking statements contained in this presentation may be identified by use of words such as "anticipate," "believe," "estimate," "expect," "forecast," "may," "project," "outlook," "should," "will," or other similar words, and include, without limitation, statements regarding the Company's expectations regarding current or future clinical trials, research programs, and financial results including that the Company requires substantial additional capital. Forward-looking statements are based on the Company's current expectations and are subject to inherent uncertainties, risks and assumptions that are difficult to predict. Further, certain forward-looking statements are based on assumptions as to future events that may not prove to be accurate, including that clinical trials may be delayed; that reported trial data may be preliminary or interim data which may be superseded by subsequent data obtained from that clinical trials or in connection with other and/or subsequent clinical trials; and that any anticipated meetings with or presentations to the U.S. Food and Drug Administration ("FDA") may be delayed, may not occur at all, or may not result in outcomes that the Company prefers. These and other risks and uncertainties are described more fully in the sections titled "Risk Factors" and "Cautionary Note Regarding Forward-Looking Statements" in the Company's Annual Report on Form 10-K for the year ended December 31, 2023, filed with the SEC on April 1, 2024, and in other reports filed with the SEC. Forward-looking statements contained in this presentation are due to the work and in other reports filed with the sections and are use interformed and any other reports filed with the SEC.

Capitalization (Dec. 31, 2023)

Source of Capital	Amount
Seed Capital (Angel investors)	\$2,240,000
SBIR Grant	2,309,000
IPO (Net Proceeds)	25,400,000
Equity Financings – 2023, 2024 (Net Proceeds)	<u>21,707,000</u>
Total	\$51,656,000

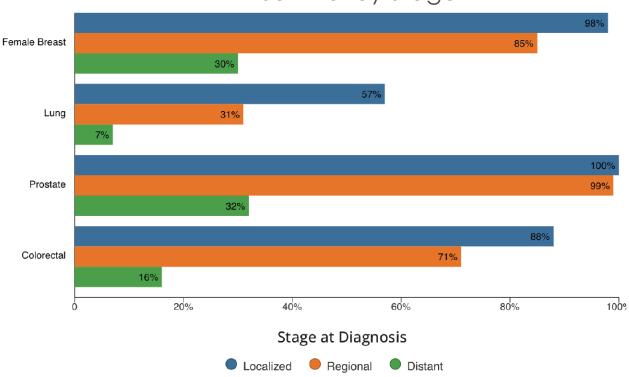
NASDAQ Symbol: RNAZ	March 20, 2024
Common Stock (includes PFWs)	6,622,053
Options (WAEP \$61,911.63)	6,682
Warrants (WAEP \$2.51)	12,375,096
Total	19,003,831

(-1

Cash at December 31, 2023 (pro forma with \$6.2 million from equity offering in January 2024):

\$9.0 million

Critical Need for An Effective Therapy Against Metastatic Cancer


Metastatic cancer is cancer that has spread beyond its organ of origin

Primary tumors are generally susceptible to current treatments

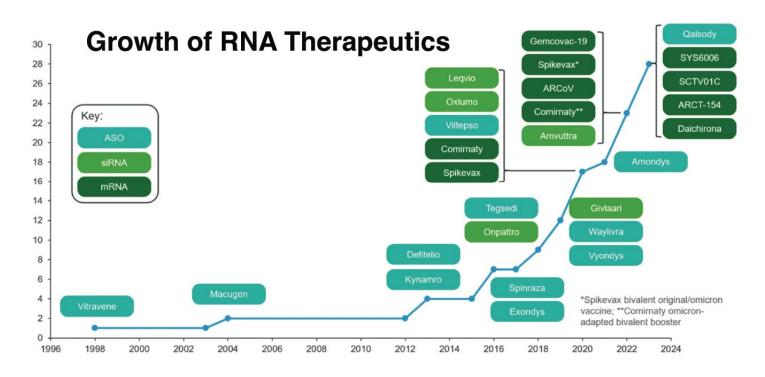
Metastatic cancer is essentially incurable

Of the 10 million cancer deaths annually worldwide, 90% are due to metastasis

\$136.9B global market by 2032

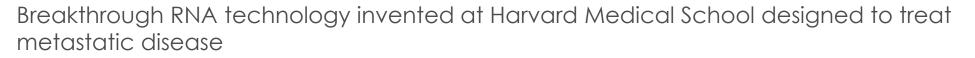
Survival by Stage

ZANSC



A Groundbreaking Solution: RNA

RNA therapeutics hold the promise of revolutionizing the way we treat a wide array of diseases


The global RNA market was \$4.9B in 2021, and is projected to reach \$25B by 2030

The promise of RNA to treat cancer has not been realized because delivery of RNA has remained unsolved – until now

* Source: 2019 American Cancer Society, Inc., Surveillance Research; International Agency for Research on Cancer in its report named GLOBOCAN 2022: Precedence Research January 2022 ** Oncotarget, 2023, Vol. 14, pp: 216-218, Therapy drives genomic evolution in metastatic cancer;

TransCode's Innovative Solution to Metastatic Cancer Using RNA

Proprietary delivery platform overcomes decades of RNA delivery challenges

FDA authorization for Phase 1/2 clinical trial received April 2024 (expected to start in Q2 2024)

ZANSC

Compelling animal data in multiple models showed evidence of complete cures of metastatic cancer

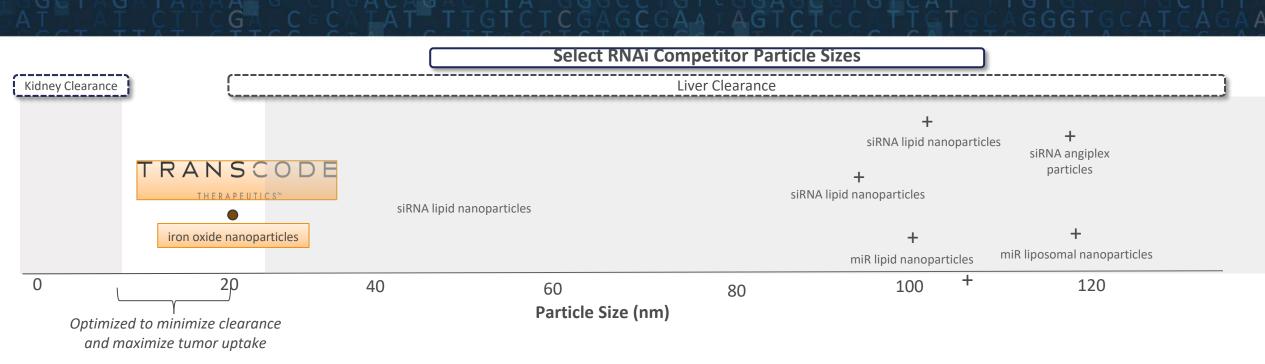
Science published in over 30 peer-reviewed publications, including Nature Medicine and Cancer Research

Robust partnerships in place, with more in pipeline

Robust IP: 10 patents in 5 patent families

Highly experienced team of pharma and financial executives, scientists, and clinical experts

Robust Proprietary Delivery Platform


Most oncology targets are currently undruggable using monoclonal antibodies (mAbs) and small molecules

Engaging these targets with TransCode's proprietary delivery system could revolutionize cancer treatment and open up a vast pipeline of new anti-cancer drugs

TransCode's therapeutic delivery platform, TTX, employs nanoparticles extensively used in imaging that have been repurposed and optimized to efficiently deliver therapeutic payloads to oncology targets

TTX design overcomes long-standing delivery challenges: Imaging-capable nanoparticles can quantify delivery to tumors Size and surface chemistry "high tunability" to a variety of payloads Scalable and cost-effective manufacturing

Proven safety profile - biodegradability and low immunogenicity

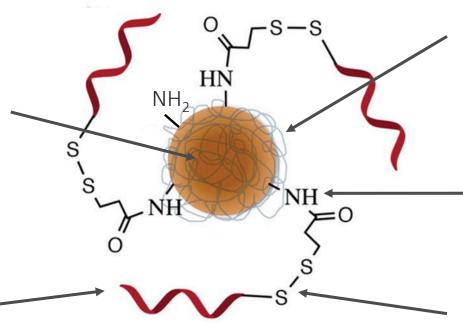
Unique Particle Size, Exceptional Safety

Stability and optimal PK and biodistribution Safety and low immunogenicity

Efficient tumor cell uptake and target engagement Capability of detection by noninvasive imaging

RANSC

Source: J Nano Res 2014, J Drug Targeting 2012, Alnylam presentation, Molecular Therapy-Nucleic Acids 2016, Nature Communications 2018, Molecular Therapy 2018, Int J Pharmaceut 2014, Analytical Chem 2013, Large Molecular Therapeutics 2017, Current Pharma Design 2015, Radiology 2018


TTX Delivery System

Iron Oxide Nanoparticle Platform

- Long circulation half-life
- Avoids early kidney and liver clearance
- Unique capability to accumulate in tumor cells and metastatic sites
- Image capable via MRI enables
 quantifiable drug delivery to target
- Highly stable, low toxicity potential; low immunogenicity

RNA-targeted nucleic acid

• Strong binding affinity, specificity and stability while minimizing immunogenicity

Dextran coating

- Stabilizes nanoparticles
- Protects oligos from degradation

ANSC

• Promotes tumor uptake and entrapment inside tumor cells

Amino functional groups

• Provide stabilization

Disulfide bond

 Allows oligo to disconnect from nanoparticle in order to bind to RNA/DNA target

Mechanism of Delivery to Tumors and Metastases

Hemodynamic targeting

TTX is long-circulating (24-30 hours); allows for distribution throughout the microcirculation of tumors and metastases

Small hydrodynamic size - easily flows from the vascular endothelium (inner cellular lining of veins, arteries, and capillaries) of tumors and metastases and diffuses throughout the tumor tissue

Metabolic targeting

Tumor cells are metabolically active and require glucose for growth. TTX is coated with a non-metabolizable glucose polymer and is avidly taken up by these metabolically-active tumor cells

The process is similar to the mechanism behind diagnostic PET imaging with fluorodeoxyglucose (FDG), widely used to diagnose and stage metastatic cancer

Tumor microenvironment Vasculature ① ② — Hemodynamic Targeting ④ Metabolic Targeting ① ① ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ① U ① ② ② ②

Mechanism of TTX Delivery

Fibroblast Microvessel Monocyte

ZANSC

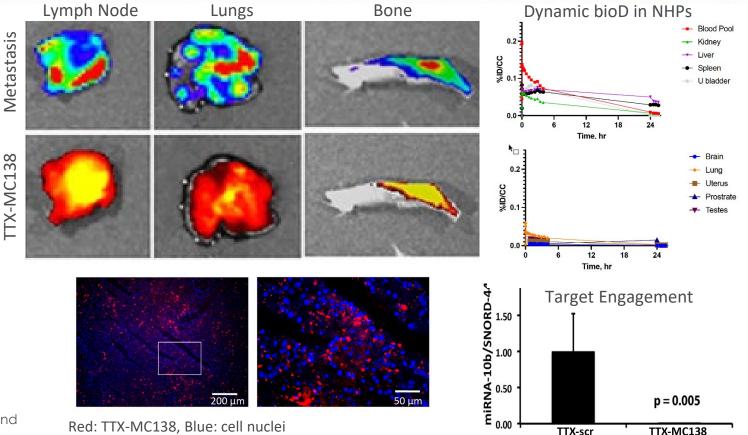
Created with BioRender.com

TTX

Evidence of Delivery to Tumors and Metastases

TTX-MC138

Delivery to tumors and metastases shown in multiple peer-reviewed publications.


Efficient delivery/pharmacodynamic (PD) activity demonstrated in multiple species (mice, companion animals, and nonhuman primates).

Delivery demonstrated for siRNA, antisense oligonucleotides, immunostimulatory RNA, mRNA, CRISPR, peptides, proteins.

Delivery demonstrated to multiple cancers, including breast, pancreatic, and GBM.

Delivery shown to be highly efficient (>90% in terms of PD activity) and long-lasting (>3 months in spontaneous cancer).

Source: Scientific Reports | 7:45060 | DOI: 10.1038/srep45060, Can Res 2015 and Cancer Nanotechnol. 2021;12(1):16.

Therapeutic Candidates

Advancing Multiple First-in-Class RNA Therapeutics

Robust Pipeline

Candidate	Target	Modality	Disease Indication	R&D	Preclinical	IND Enabling	Phase 0	Phase I	Phase 2	Phase 3
TTX-MC138	miR-10b	RNAi	Metastatic Cancer *Pancreatic Cancer							
TTX-siPDL1	PD-LI	RNAi	*Pancreatic Cancer							
TTX-RIGA	Multiple	PRR - RIGI	Cancer Agnostic							
TTX-CRISPR	Multiple	CRISPR (Cas9)	Cancer Agnostic							
TTX-CRISPR	Multiple	CRISPR (BEC)	Cancer Agnostic							
TTX- mRNA	Vaccine	mRNA	Cancer Agnostic							

* Received Orphan designation status from FDA

TTX-MC138 targets miRNA-10b, an RNA critical in metastatic cancer

ANS

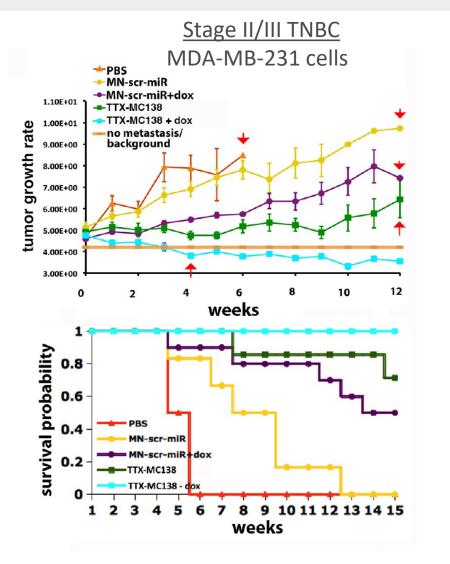
miR-10b is linked to metastatic disease in >200 clinical studies in cancer patients

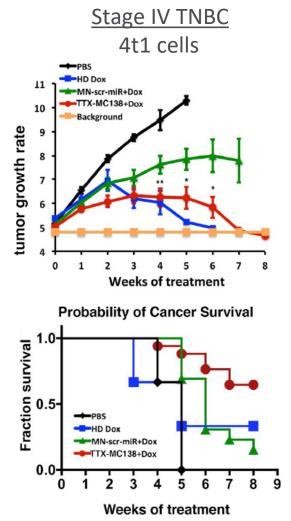
miR-10b is shown to drive metastatic progression in multiple preclinical models

miR-10b is proven to play a critical role in the survival of metastatic tumor cells

TTX-MC138 has shown complete regressions of metastatic disease in multiple preclinical studies

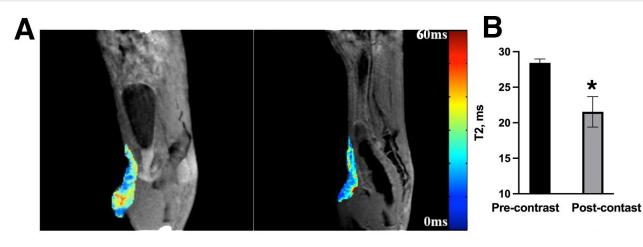
Source: Sheedy et al., Am J Cancer Res. 2018;8(9):1674-1688; Yoo et al., Cancer Res. 2015;75(20):4407-15; Ma et al., Nature. 2007;449(7163):682-8.

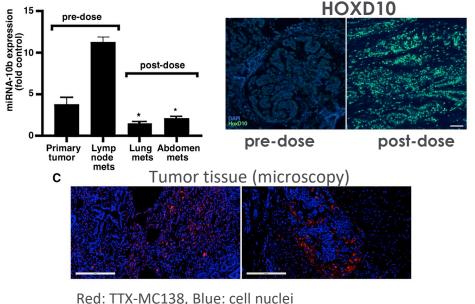

TTX-MC138 Evidence of Durable Regressions Preclinically (Murine Models)

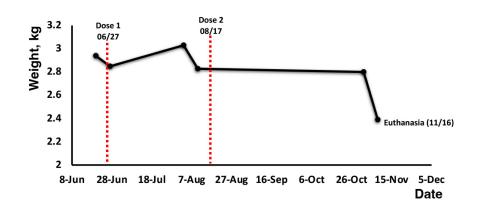


Human (Stage II/III) or mouse (Stage IV) triple negative breast cancer cells implanted orthotopically into mice.

Mice were treated with TTX-MC138 after formation of metastasis.


100% (Stage II/III) and **65%** (Stage IV) animals regressed disease completely without recurrence for the animals' natural life.





TTX-MC138 Evidence of Efficacy in Spontaneous Mammary Carcinoma (Feline Model)

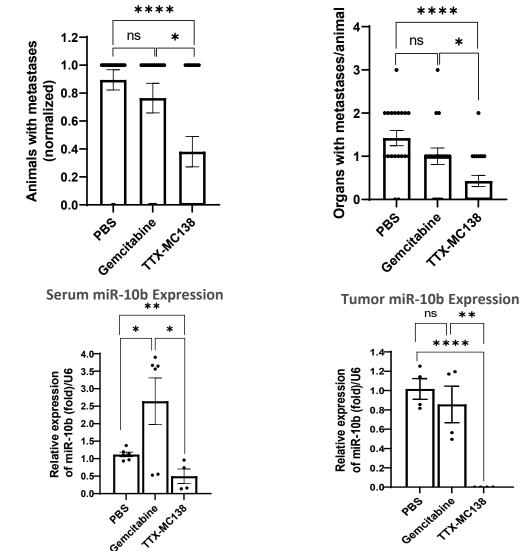
TTX-MC138 accumulated in metastatic lesions

TTX-MC138 remained in the tumor cells and demonstrated PD activity 3 months after injection

Animal was scheduled for euthanasia the week after initial treatment, but after just one dose, gained weight, resumed eating and drinking, and survived for 5 additional months.

Treatment was found to be safe with liver aspartate transaminase (AST) and creatine kinase (CK) levels slightly but transiently elevated after injection.

Evidence of Pre-Clinical Efficacy in Pancreatic Cancer (Murine Model)



Mice were treated with TTX-MC138 after tumor formation.

Metastatic incidence was inhibited by 50% relative to standardof-care chemotherapy.

TTX-MC138 displayed remarkable PD activity with target inhibition in tumors over 10,000-fold relative to controls.

Complete regressions observed in up to 40% of animals, depending on treatment dose and schedule.

First-In-Human (FIH) Phase 0 Study Opened 2023

Phase I Clinical Trial Expected To Commence Q2 2024

Clinical Trials Phase 0 Clinical Trial

PURPOSE

METHODS

TTX-MC138 (radiolabeled with	1
Cu-64) a microRNA-10b (miR-	
10b) inhibitor, will be evaluated	
in a Phase O clinical study	
conducted under an Exploratory	
IND to evaluate delivery of the	
molecule to metastatic lesions	
in subjects with advanced solid	
tumors by using PET-MRI.	

KEY INCLUSION*	KEY EXCLUSION*
ECOG PS of 0 or 1	Anticancer therapy (not immunotherapy/Ab
At least 1 metastatic	therapies) \leq 14 days or 5 half-lives before study drug
solid tumor \geq 1 target	 Prior antibody therapy ≤ 28 days before study drug
lesion per RECIST 1.1	Clinically significant, uncontrolled cardiovascular
(\geq 10 mm per MRI from	disease
FDG PET-MRI)	Symptomatic CNS metastases or primary CNS tumor
Adequate organ function	associated with progressive neurologic symptoms or
per protocol definitions	requires ongoing corticosteroids to control CNS
	disease

Primary analysis: Summarize %ID/cc tissue delivered to metastatic lesions Safety analysis: Descriptive statistics to summarize safety data

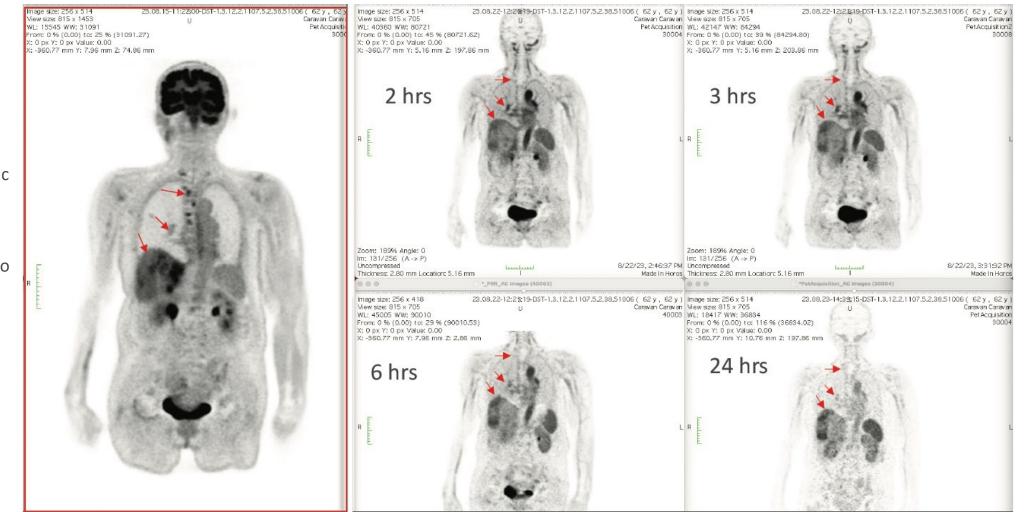
OBJECTIVES	ENDPOINTS
Primary Objectives	Primary Endpoint
Delivery of TTX-MC138-NODAGA- Cu64 in radiographically confirmed metastatic lesions	%ID/cc tissue of TTX-MC138- NODAGA-Cu64 delivered to metastatic lesions
Secondary Objectives	Secondary Endpoints
PK and biodistribution of TTX-MC138-NODAGA-Cu64	PK of TTX-MC138-NODAGA- Cu64, metabolite analysis, and target engagement
Safety of a single microdose of TTX-MC138-NODAGA-Cu64	Incidence and severity of TEAEs and labs

	Meas	urement	ts by Tim	е
	Screening	Micro- dosing		Follow up
		Î	1	Ì
Study Day	-14 to -1	1	2	30 (± 5)
Informed Consen	t X			
FDG PET-MRI	Х			
ECOG PS	х	Х		
Clinical Labs	х	Х	Х	
ECG	х	Х	х	
Adverse Events	Х	Х	Х	Х
Microdosing		Х		
PET-MRI (whole b	oody)	Х	х	
PK sampling		Х	Х	

Preliminary Results Dynamic Imaging Data (Data Monitoring Is Ongoing)

Female, Stage IV, metastatic breast cancer. Primary metastatic sites: bone, liver, lungs

FDG PET-MRI before dosing with TTX-MC138 was used to indicate location of metastatic lesions (red arrows)


PET/MRI at 2, 3, 6 and 24 hours post-dosing was used to detect the presence of TTX-MC138

Results show TTX-MC138 accumulation (red arrows) in the metastatic lesions

No safety issues; absence of any allergic hypersensitivity related adverse events

FDG PET-MRI

64Cu-TTX-MC138 PET-MRI

Clinical trial design assesses safety, RP2D* and early of anti-tumor activityScreeningPhase 1aPhase 1aPhase 1b

Escalating Dose Levels

Indication: All comers

Advanced Solid Tumors

Design: Bayesian Optimal Interval Design (BOIN) N ≤ 32 Dose Expansion Up to 3 cohorts; indications TBD. Design Scenario: Dose and schedule pending Phase 1 data analysis.

Phase 1/2: Open-label, multicenter, dose-escalation

Primary Objectives:

Evaluate the safety and tolerability

Determine maximum tolerated dose (MTD) Select a recommended Phase 2 dose (RP2D).

<u>Secondary objectives</u>: Characterize pharmacokinetics and pharmacodynamics.

Exploratory Objectives: Explore the effect of TTX-MC138 on biomarker expression.

Dose Rationale: Non-clinical data, NHP data, Physiologic PK Model

Dosing Scheme: Up to four dose levels planned for evaluation

<u>Schedule</u>: Screening, treatment 28-day cycles consisting of 1 dose of study drug administered as an intravenous (IV) infusion and Survival Follow Up

Indications: All comers in Phase 1a; Phase 1b tumor types to be determined based on Phase 1a data.

Key Assessments: CT Scan, Biopsy, miR-10b, ct-DNA, RNA Sequencing

Strategic Partnerships

RANSC

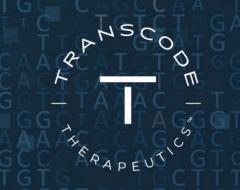
Product	Partner	Program; Progress
TTX-CRISPR (BEC)	Akribion Genomics	Optimizing in vitro POC* then move into animals
TTX-mRNA	Debiopharm	Successful in vitro delivery of mRNA inside tumor cells; next step is optimizing for targeted delivery
TCD-miR-10b	LabCorp	Developing assay for clinical measurement of miR-10b in patient samples for clinical trials
TTX-MC138	MD Anderson Cancer Center	Clinical development of TTX-MC138
TTX-MC138	Massachusetts General Hospital	Clinical development of TTX-MC138
ttx-siRNA	Potential**	Tumor-targeted siRNA delivery
TTX-mRNA	Potential**	mRNA delivery to tumors
Various	Michigan State University	Preclinical development of pipeline candidates

* Proof of Concept

** Negotiations in Progress

Patent Portfolio

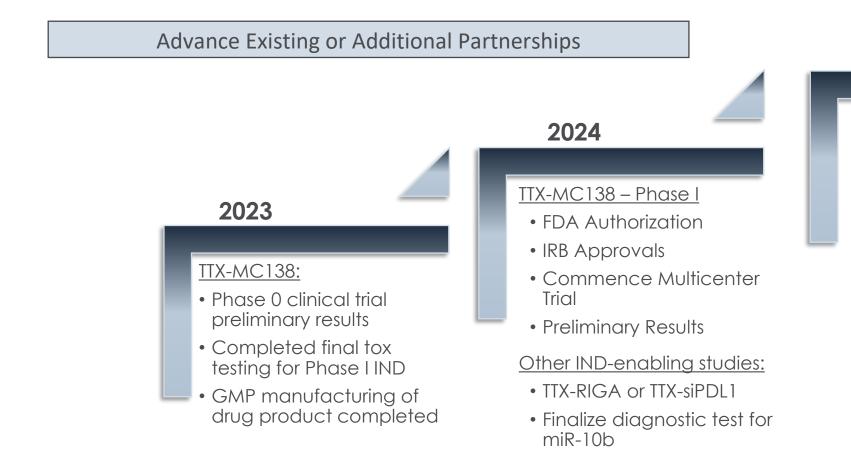
Patent Coverage for TTX Platform and Therapeutic Candidates



Patents/applications cover both composition of matter and methods claims

Technology	Geography	Expiration	Patents/Applications	Notes
TTX IONP for Payload Delivery	us, eu, ca, cn, kr	2039	WO2021/113829	IONP design, payload delivery
Nanosensor IONP	75% of World	2043	US10,086,093; EP 2 961 386 IONP, polynucleotide and detection in cells & tissue	
Target	Geography	Expiration	Patents/Applications	Notes
miR-10b	75% of World	2043	US9,629,812; US9,763,891; US10,463,627; Two Unpublished Continuations	IONP delivery of antagomir, targeting, low dose, sustained release.
miR-10b, miR-17, miR-18, miR-19b, miR- 21, miR-26a, miR-29a, miR-92a, miR- 155, miR-210, miR-221	US, EU, JP, KR	2040	WO2022/147177	Target sequences form basis of RIG-I activation technology.
PDL-1	US, EU, JP, CN, CA, AU, KR	2038	WO2020/068398	IONP delivery of siRNA

IONP: Iron-oxide nanoparticle



Target Milestones

Potential for Value-Generating Catalysts in 2024 and 2025

Value
InflectionPotential to Create Multiple Liquidity Opportunities

2025

TTX-MC138

- Expansion Phase I/II dose patients
- or, potentially,
- Prepare for Phase III or commercialization (depending on results)

Advance next therapeutic candidate(s) to clinic

 Initiate IND submissions for additional candidates

TransCode Team

TransCode's senior leadership combines decades of oncology drug discovery and development expertise, adding both scientific insight and valuable strategic perspective.

Executive Team

Tom Fitzgerald, Interim CEO, CFO, Director

Zdravka Susan Duggan, Medarova, PhD RN, MBA Founder/Chief Sr. VP of Scientific Officer Operations

Tania

Montgomery,

Business

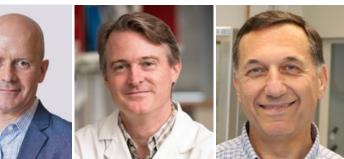
Development

Philippe Calais, PhD Executive Chairman

Magda Marquet, PhD Director

Erik Manting, PhD Director

Keith Flaherty, MD Advisor


Frank Slack, PhD Advisor

Lubo Nechev, PhD Advisor

Independent Directors

Key Advisors

ZANSC

Potential to Transform the Way Cancer is Treated

Value Proposition	Undervalued therapeutic assets with potential for significant return on investment Clinical stage oncology company with a focus on treating metastatic disease Proprietary delivery platform designed to overcome the challenges of therapeutic delivery to tumors & metastases Complete regression of established metastases using TTX-MC138 in preclinical studies Extensive patent portfolio covering delivery system and targeted therapeutics Expanding strategic partnerships
Differentiated Delivery System	Tunable chemistry optimized for functionalization against validated oncology targets Size and charge optimized for stability, long circulation, and optimal PK, PD and biodistribution Nanoparticles used in cancer imaging & treatment of iron deficiency anemia repurposed as delivery system Delivery platform is image-capable via MRI – potential for visual confirmation and quantification of delivery
Major Unmet Need	~10 million people died of cancer in 2020*; over 90% attributable to metastasis Virtually no treatment options for cancer patients with advanced disease Metastatic cancer market to reach \$136.9 billion by 2032**

G

Additional Slides

Hazard Ratios for Overall Survival Based on High vs. Low miR-10b Expression

WILEY Cellular Physiology

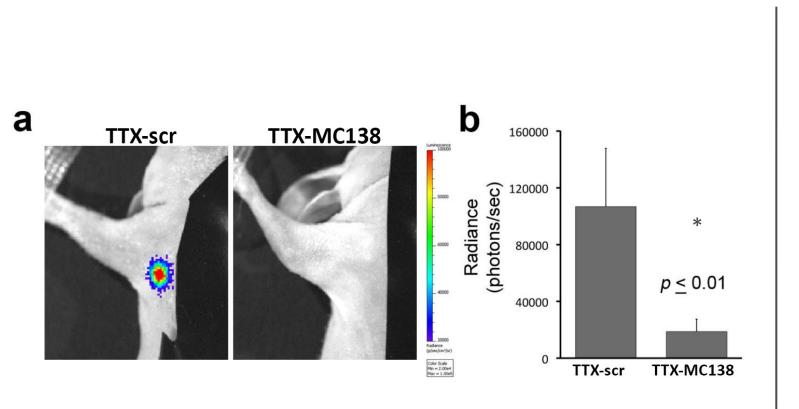

ZHANG ET AL.

TABLE 2 Pooled HR for OS according to subgroup analysis

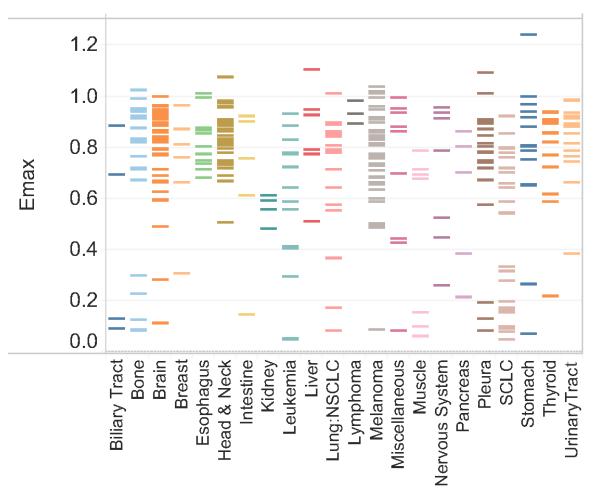
			Fixed effects model	Heterogeneity		
Categories	Studies (n) Number of patients		HR (95% CI) for OS	p-value	l ² (%)	Ph
OS 17 1,681		1.99 (1.51-2.61)	0.000	72.6	0.000	
Cancer type						
Digestive system cancers	4	592	1.95 (1.46-2.60)	0.000	0	0.489
Others	13	1,089	2.06 (1.45-2.93)	0.000	77.6	0.000
PC	2	210	2.47 (1.69-3.60)	0.000	0	0.366
NSCLC	4	311	1.75 (1.21-2.54)	0.003	0	0.930
Glioma	2	223	4.84 (3.25-7.22)	0.000	0	0.944
CRC	4	592	1.95 (1.46-2.60)	0.000	0	0.489
BC	4	311	1.21 (1.05-1.38)	0.007	0	0.972
Cutoff value						
Median	8	763	2.51 (1.76-3.57)	0.000	52.8	0.038
Mean	2	174	1.80 (1.10-2.97)	0.019	0	0.427
Others	7	744	1.61 (1.17-2.23)	0.004	55.0	0.038
Analysis type						
Multivariate	12	1,217	1.63 (1.32-2.00)	0.000	36.1	0.102
Survival curves	5	464	3.20 (2.01-5.10)	0.000	54.0	0.069
Sample size						
≥100	6	889	2.45 (1.99-3.02)	0.000	63.3	0.018
<100	11	792	1.35 (1.19-1.53)	0.000	53.6	0.017

Note. BC: breast cancer; CI: confidence interval; CRC: colorectal cancer; HR: hazard ratio; NSCLC: non-small-cell lung cancer; OS: overall survival; PC: pancreatic cancer.

Pre-Clinical POC Prevention of Metastatic Breast Cancer

 Human breast cancer cells implanted orthotopically into immunocompromised mice

NS


- Mice were treated with MN-anti-miR10b (TTX-MC138) prior to formation of metastasis
- None of the treated animals formed
 <u>metastases</u>
- By contrast, control animals treated with an inactive form of TTX-MC138 (MN-scrmiR) formed detectable lymph node metastases within 4 weeks

TTX-MC138 Evidence of Efficacy in Multiple Cancer Types

The sensitivity to TTX-MC138 was tested in 624 human cell lines representing metastatic and non-metastatic cancers.

TTX-MC138 elicits strong viability responses in a distinct subset of cell lines

Profile of response across cell lines from different tissues of origin. The response to TTX-MC138 is shown as Emax (maximum effect observed: minimum cell viability observed across the two maximum doses tested).

p.i. = post injection

Parameter/Timepoint	Pre	15 min p.i.	30 min p.i.	1 hr p.i.	2 hr p.i.	4 hr p.i.	10-30 hr p.i.
Date of sample Collection (DD/MMM/YYYY)	22-Aug- 2023	22-Aug- 2023	22-Aug- 2023	22-Aug- 2023	22-Aug- 2023	22-Aug- 2023	23-Aug- 2023
Time of sample collection (HH:MM)	12:36	14:16	14:36	15:03	16:03	18:08	14:00
Metabolite analysis (Percent intact compound %)	-	90.3	93.1	93.7	96.3	98.1	95.6
Plasma radioactivity per volume (kBq/mL)	-	13.4	13.1	12.0	11.1	11.0	5.3

- Diagnosis Female, Stage IV, Metastatic Breast Cancer
- Primary Metastatic Sites: Bone, Liver, Lungs
- All sample timepoints collected; pre-dose sample collected but not analyzed
- No adverse events reported

Preliminary Data - data entry and data monitoring are ongoing

TTX-siPDL1: A First-in-Class siRNA Checkpoint Inhibitor

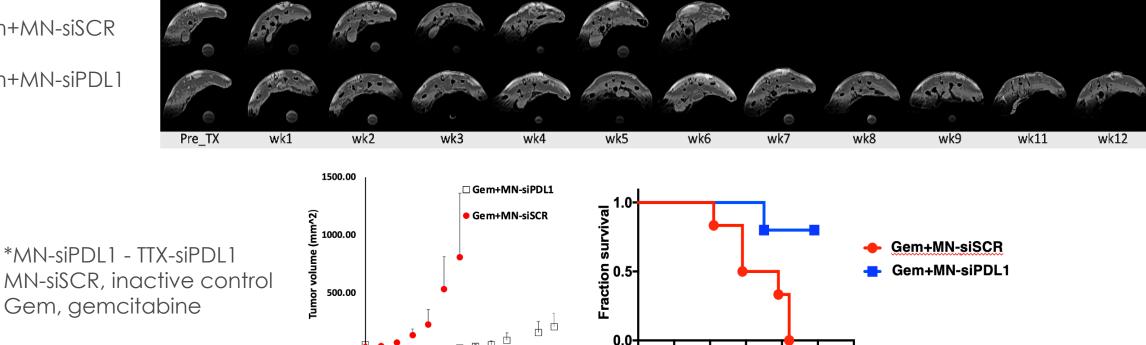
Mechanism of action based on RNA interference with potential to be more efficient that traditional monoclonal-antibody based checkpoint inhibitors

Potential to be applied against multiple cancers, including melanoma, lung cancer, pancreatic cancer, etc.

PANSO

TTX-siPDL1 Efficacy in Preclinical Mouse Model of Pancreatic Cancer (PDAC)

0.00


0 1 2 3 4

5 6

weeks

Gem+MN-siSCR Gem+MN-siPDL1

20

10

30

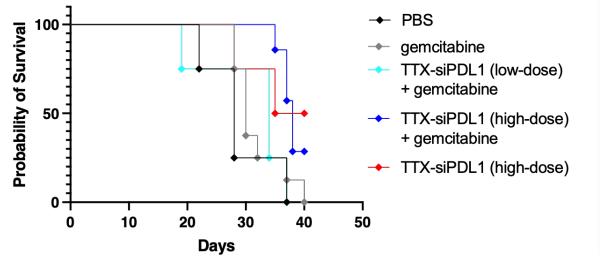
days

50

40

60

TTX-siPDL1 + gemcitabine regressed pancreatic tumors by 90% within the first two weeks of treatment and delayed tumor growth.


9 10 11 12

8

Treatment increased survival - 67% of the experimental animals survived for 12 weeks.

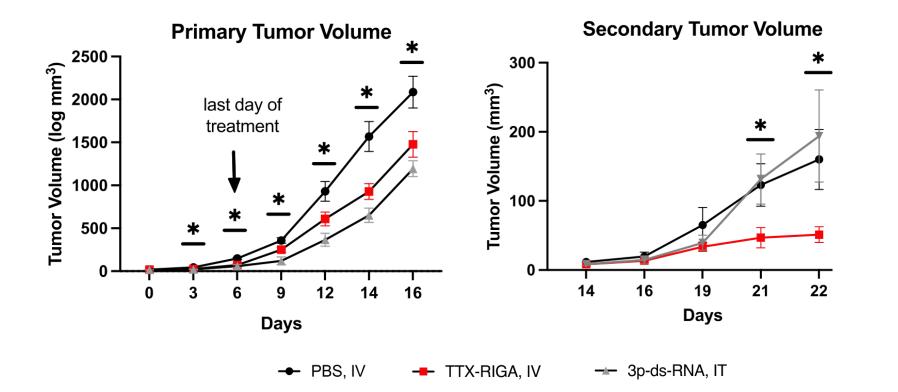
TTX-siPDL1 Efficacy in A Highly Aggressive Model of PDAC with Intense Desmoplasia

HR for OS vs. PBS	HR (95% CI)
gemcitabine	0.42 (0.082-2.18)
TTX-siPDL1 (high-dose)	0.24 (0.04-1.51)
TTX-siPDL1 (low-dose) + gemcitabine	0.69 (0.11-4.30)
TTX-siPDL1 (high-dose) + gemcitabine	0.08 (0.01-0.56)

- TTX-siPDL1 + gemcitabine dramatically decreased hazard ratios for survival relative to standard-of-care chemotherapy
- Treatment reduced tumor growth rate relative to buffer-treated controls by 4-fold

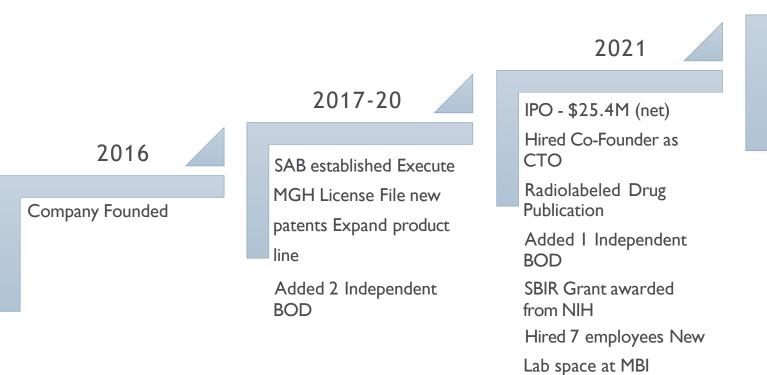
TTX-RIGA

A Pattern Recognition Receptor Agonist


Potential to trigger the immune system to regress cancer

Treatment applicable to deep-seated or disseminated cancer

Potential to cause immune-rejection of pre-existing or recurrent tumors


ZANSC

- Mouse melanoma cells
 implanted into mice
- Primary tumor growth was inhibited relative to buffer-only control
- Secondary recurrent tumor growth was dramatically inhibited relative to standard-ofcare RIG-I agonists

Achievements

2022

PANSC

O m

Alliance member of MD Anderson Cancer Ctr

Orphan Drug Designation (ODD) received for siPDLI in pancreatic cancer

Pancreatic cancer study published - 40% of animals showed complete regression

FDA approves FIH clinical trial

Added I 2 employees

Preclinical studies completed in 3 products

Publications

Linked references in italics below are authored by TransCode's scientific co-founders

Anna Moore, N.A. Savan, Paulo V. Saavedra, Alan Halim, Vilma Yuzbasiyan-Gurkan, Ping Wang, Byunghee Yoo, Matti Kiupel, Lorenzo Sempere, Zdravka Medarova: Case Report: microRNA-10b as a Therapeutic Target in Feline Metastatic Mammary Carcinoma and its Implications for Human Clinical Trials. Frontiers in Oncology October 26, 2022 12:959630

Le Fur et al.,: Radiolabeling and PET-MRI micro-dosing of the experimental cancer therapeutic, MN-anti-miR10b, demonstrates delivery to metastatic lesions in a murine model of metastatic breast cancer. Cancer Nanotechnology 2021;12(1):16.

G

Byunghee Yoo, Alana Ross, Pamela Pantazopoulos & Zdravka Medarova: miRNA10b-directed nanotherapy effectively targets brain metastases from breast cancer, Scientific Reports volume 11, Article number: 2844 (2021)

Sheedy, P, Medarova, Z: The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018;8(9):1674-1688.

Yoo B, Greninger P, Stein GT, Egan RK, McClanaghan J, Moore A, et al. (2018) Potent and selective effect of the mir-10b inhibitor MN-anti-mir10b in human cancer cells of diverse primary disease origin. PLoS ONE 13(7): e0201046 2018.

Yoo B, Fuchs BC and Medarova Z: New Directions in the Study and Treatment of Metastatic Cancer. Frontiers in Oncology Volume 8, Article 258, July 2018

Yoo B, Kavishwar, A, Wang, P, Ross, A, Pantazopoulos, P Dudley, M, Moore, A, & Medarova, Z: Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Scientific Reports 21 March 2017 7:45060 | DOI: 10.1038/srep45060.

Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, Barteneva N, Petkova V, Pantazopoulos P, Tena A, Moore A, Medarova Z: Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast cancer. Cancer Res 2015, 75:4407-4415.

Yoo B, Kavishwar A., Ghosh SK, Barteneva N, Yigit MV, Moore A. Medarova Z.: Detection of miRNA Expression in Intact Cells Using Activatable Sensor Oligonucleotides. Chemistry & Biology 21, 199–204, February 20, 2014

Yoo B, Ghosh SK, Kumar M, Moore A, Yigit MV, Medarova Z: Design of nanodrugs for miRNA targeting in tumor cells. J Biomed Nanotechnol 2014;10:1114-1122

<u>Yigit MV, Ghosh SK, Kumar M, Petkova V, Kavishwar A, Moore A, Medarova Z: Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis. Oncogene 2013;32:1530-1538</u>

NSC